HISTOGRAMA.
En estadística, un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados. En el eje vertical se representan las frecuencias, y en el eje horizontal los valores de las variables, normalmente señalando las marcas de clase, es decir, la mitad del intervalo en el que están agrupados los datos.
Se utilizan para variables continuas o para variables discretas, con un gran número de datos, y que se han agrupado en clases.
Se utiliza cuando se estudia una variable continua, como franjas de edades o altura de la muestra, y, por comodidad, sus valores se agrupan en clases, es decir, valores continuos. En los casos en los que los datos son cualitativos (no-numéricos), como sexto grado de acuerdo o nivel de estudios, es preferible un diagrama de sectores.
Tipos de histograma
- Diagramas de barras simples
Representa la frecuencia simple (absoluta o relativa) mediante la altura de la barra la cual es proporcional a la frecuencia simple de la categoría que representa.
- Diagramas de barras compuesta
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, las cuales se representan así; la altura de la barra representa la frecuencia simple de las modalidades o categorías de la variable y esta altura es proporcional a la frecuencia simple de cada modalidad.
- Diagramas de barras agrupadas
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, el cual es representado mediante un conjunto de barras como se clasifican respecto a las diferentes modalidades.
- Polígono de frecuencias
Es un gráfico de líneas que de las frecuencias absolutas de los valores de una distribución en el cual la altura del punto asociado a un valor de las variables es proporcional a la frecuencia de dicho valor.
- Ojiva porcentual
Es un gráfico acumulativo, el cual es muy útil cuando se quiere representar el rango porcentual de cada valor en una distribución de frecuencias.
OJIVAS.
Se llama ojiva a la gráfica de una distribución de frecuencia acumulativa. La ojiva de una distribución de este tipo se muestra en la figura. Los puntos graficados representan la cantidad de galones que tienen menos cloro que las partes por millón indicadas sobre el eje horizontal.
Ojiva “menor que” de la distribución de las concentraciones de cloro en ppm para 30 galones de agua tratada.
En ocasiones la información que se utiliza se presenta a partir de frecuencias “mayores que”. La ojiva apropiada para tal información tendrá una pendiente hacia abajo y hacia la derecha.
También es posible construir una ojiva de una distribución de frecuencia relativa, de la misma manera que una absoluta.
POLIGONO DE FRECUENCIA.
Una distribución de frecuencia acumulativa nos permite ver cuantas observaciones se hallan por arriba o por debajo de ciertos valores, en lugar de limitarnos a anotar los números de elementos dentro de los intervalos. Por ejemplo, si queremos saber cuantos galones contienen menos de 17.0 ppm, podemos servirnos de una tabla que incluya frecuencias acumulativas “menores que” en nuestra muestra.
Distribución de frecuencia acumulativa “menor que” de las concentraciones de cloro en ppm
Se llama ojiva a la gráfica de una distribución de frecuencia acumulativa. La ojiva de una distribución de este tipo se muestra en la figura. Los puntos graficados representan la cantidad de galones que tienen menos cloro que las partes por millón indicadas sobre el eje horizontal.
Ojiva “menor que” de la distribución de las concentraciones de cloro en ppm para 30 galones de agua tratada.
También es posible construir una ojiva de una distribución de frecuencia relativa, de la misma manera que una absoluta.
POLIGONO DE FRECUENCIA.
Es el nombre que recibe una clase de gráfico que se crea a partir de un histograma de frecuencia. Estos histogramas emplean columnas verticales para reflejar frecuencias): el polígono de frecuencia es realizado uniendo los puntos de mayor altura de estas columnas.
Es decir, por tanto, podríamos establecer que un polígono de frecuencia es aquel que se forma a partir de la unión de los distintos puntos medios de las cimas de las columnas que configuran lo que es un histograma de frecuencia. Este se caracteriza porque utiliza
Comentarios
Publicar un comentario