Lógica matemática
La lógica matemática es una parte de la lógica y las matemáticas que consiste en el estudio matemático de la lógica y en la aplicación de este estudio a otras áreas de las matemáticas. La lógica matemática tiene estrechas conexiones con las ciencias de la computación y la lógica filosófica.
La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones y algoritmos, utilizando un lenguaje formal.
La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de los fundamentos de las matemáticas. Actualmente se usan indiferentemente como sinónimos las expresiones: lógica simbólica (o logística), lógica matemática, lógica teorética y lógica formal.
La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente.
A partir de la segunda mitad del siglo XIX, la lógica sería revolucionada profundamente. En 1847, George Boole publicó un breve tratado titulado El análisis matemático de la lógica, y en 1854 otro más importante titulado Las leyes del pensamiento. La idea de Boole fue construir a la lógica como un cálculo en el que los valores de verdad se representan mediante el 0 (falsedad) y el 1 (verdad), y a los que se les aplican operaciones matemáticas como la suma y la multiplicación.
Al mismo tiempo, Augustus De Morgan publica en 1847 su obra Lógica formal, donde introduce las leyes de De Morgan e intenta generalizar la noción de silogismo. Otro importante contribuyente inglés fue John Venn, quien en 1881 publicó su libro Lógica Simbólica, donde introdujo los famosos diagramas de Venn.
Charles Sanders Peirce y Ernst Schröder también hicieron importantes contribuciones.
Sin embargo, la verdadera revolución de la lógica vino de la mano de Gottlob Frege, quien frecuentemente es considerado como el lógico más importante de la historia, junto con Aristóteles. En su trabajo de 1879, la Conceptografía, Frege ofrece por primera vez un sistema completo de lógica de predicados y cálculo proposicional. También desarrolla la idea de un lenguaje formal y define la noción de prueba. Estas ideas constituyeron una base teórica fundamental para el desarrollo de las computadoras y las ciencias de la computación, entre otras cosas. Pese a esto, los contemporáneos de Frege pasaron por alto sus contribuciones, probablemente a causa de la complicada notación que desarrolló el autor. En 1893 y 1903, Frege publica en dos volúmenes Las leyes de la aritmética, donde intenta deducir toda la matemática a partir de la lógica, en lo que se conoce como el proyecto logicista. Su sistema y su aplicación a la teoría de conjuntos, sin embargo, contenía una contradicción (la paradoja de Russell).
Lógica matemática fue el nombre dado por Giuseppe Peano para esta disciplina. En esencia, es la lógica de Aristóteles, pero desde el punto de vista de una nueva notación, más abstracta, tomada del álgebra.
En 1910, Bertrand Russell y Alfred North Whitehead publican Principia mathematica, un trabajo monumental en el que logran gran parte de la matemática a partir de la lógica, evitando caer en las paradojas en las que cayó Frege. Los autores reconocen el mérito de Frege en el prefacio. En contraste con el trabajo de Frege, Principia mathematica tuvo un éxito rotundo, y llegó a considerarse uno de los trabajos de no ficción más importantes e influyentes de todo el siglo XX. Principia mathematica utiliza una notación inspirada en la de Giuseppe Peano, parte de la cual todavía es muy utilizada hoy en día.
En 1912 C. I. Lewis publica Conditionals and the Algebra of Logic, justo después de los Principia Mathematica de Russell y Whitehead. En 1918 publica A Survey of Symbolic Logic en donde propone un nuevo condicional más adecuado para recoger el significado de la expresión "si... entonces" del lenguaje natural. Lewis lo llama implicación estricta. El nuevo condicional requiere, para ser verdadero, una relación más fuerte entre el antecedente y el consecuente que el condicional clásico.
En 1920 David Hilbert propuso de forma explícita un proyecto de investigación (en metamatemática, como se llamó entonces) que acabó siendo conocido como programa de Hilbert. Quería que la matemática fuese formulada sobre unas bases sólidas y completamente lógicas.
El origen de los modelos abstractos de computación se encuadra en los años '30 (antes de que existieran los ordenadores modernos), en el trabajo de los lógicos Alonzo Church, Kurt Gödel, Stephen Kleene, Emil Leon Post, Haskell Curry y Alan Turing. Estos trabajos iniciales han tenido una profunda influencia, tanto en el desarrollo teórico como en abundantes aspectos de la práctica de la computación; previendo incluso la existencia de ordenadores de propósito general, la posibilidad de interpretar programas, la dualidad entre software y hardware, y la representación de lenguajes por estructuras formales basados en reglas de producción.
La deducción natural fue introducida por Gerhard Gentzen en su trabajo Investigaciones sobre la inferencia lógica (Untersuchungen über das logische Schliessen), publicado en 1934-1935.
En los años 40 Alfred Tarski comenzó a desarrollar junto a sus discípulos el álgebra relacional, en la que pueden expresarse tanto la teoría axiomática de conjuntos como la aritmética de Peano. También desarrolló junto a sus discípulos las álgebras cilíndricas, que son a la lógica de primer orden lo que el álgebra booleana a la lógica proposicional. En 1941 publicó en inglés uno de los manuales de lógica más acreditados, Introduction to Logic and to the Methodology of Deductive Sciences.
Noam Chomsky en 1956 propone una clasificación jerárquica de distintos tipos de gramáticas formales que generan lenguajes formales llamada jerarquía de Chomsky.
Si bien a la luz de los sistemas contemporáneos la lógica aristotélica puede parecer equivocada e incompleta, Jan Łukasiewicz mostró que, a pesar de sus grandes dificultades, la lógica aristotélica era consistente, si bien había que interpretarse como lógica de clases, lo cual no es pequeña modificación. Por ello la silogística prácticamente no tiene uso actualmente.
Además de la lógica proposicional y la lógica de predicados, el siglo XX vio el desarrollo de muchos otros sistemas lógicos; entre los que destacan las muchas lógicas modales.
QUE PRETENDE LA LÓGICA MATEMÁTICA.
La lógica matemática es el intento de dar una “forma universal” al pensamiento, expresándolo por un sistema unívoco de signos (estos quiere decir, un sistema en el que cada signo tenga un solo significado en un mismo contexto), con un sistema de relaciones entre esos signos comparable al cálculo matemático, para alcanzar así todas las verdades.
La lógica matemática pretende hacer que todas las relaciones reales se vuelvan formales; pretende reducirlas a una “expresión matemática” que pueda ser calculada como en las matemáticas.
Por esa razón es que se le llama también “álgebra de la lógica”.
OBJETO DE LA LÓGICA MATEMÁTICA.
Al estudiar la lógica clásica, hemos constatado el hecho de que la relación fundamental que se estudia es la del verbo ser.
Eso es así porque la lógica clásica es una lógica que parte del “análisis de las proposiciones en sus términos” componentes: considerar sólo una relación o reducir las demás relaciones a una sola simplifica el asunto y posibilita la construcción formal de la lógica clásica.
La lógica matemática considera las proposiciones como formando una unidad de significado, como una proposición ya constituida, por eso es que la lógica matemática ha sido llamada también “lógica de proposiciones no analizadas”.
Esto significa que el interés de la lógica matemática recae en la proposición integralmente considerada, lo cual no es obstáculo para efectuar en algún nivel ciertos análisis de las proposiciones.
MÉTODO DE LA LÓGICA MATEMÁTICA.
Considera la lógica matemática como punto de partida las relaciones de “inclusión” (producto lógico) y de “exclusión” (suma lógica).
A partir de esas relaciones se puede establecer un sistema de simbolización como el del álgebra en el cual pueda expresarse toda proposición del lenguaje y de la ciencia.
Por ese medio pretenden analizar a un nivel metalógico (más que lógico) todo tipo de razonamiento desde la forma cuantitativa de ese mismo razonamiento.
PARTÍCULAS FÁCTICAS Y LÓGICAS DEL LENGUAJE.
Las partículas fácticas (del latín “factum” que quiere decir “hecho”) son aquellas partículas variables que pueden tener referencia a un objeto o acontecimiento.
Las partículas lógicas son aquellas partículas que determinan a las partículas fácticas ya sea limitándolas (cuantificadores) o bien relacionándolas (funciones).
PROPOSICIONES Y FUNCIONES.
En el caso de la lógica matemática de proposiciones no analizadas, los elementos del razonamiento lógico son de dos clases:
a) Variables de proposición, que representan el contenido fáctico del lenguaje.
b) Funciones de proposición, que representan las operaciones lógico-matemáticas que pueden realizarse entre las variables de proposición.
VALOR DE VERDAD.
Una proposición simple puede ser verdadera o falsa, pero no verdadera y falsa a la vez.
Las proposiciones complejas que están compuestas de dos o más proposiciones simples, pueden tener diversas posibilidades de verdad.
Si es “n” el número de proposiciones simples que integran la proposición compleja, el número de posibilidades de verdad de la proposición compleja vendrá indicado por 2n.
Cada una de las proposiciones simples puede simbolizarse por una letra minúscula de la “p” en adelante, así: p, q, r, s, ..., p’, q’, ..., p’’, q’’,
TABLA DE VERDAD.
Si ordenamos las posibilidades de verdad de una proposición, nos encontramos son su tabla de verdad.
La tabla de verdad nos refleja gráficamente las condiciones de verdad de una proposición. Veamos algunos ejemplos:
La lógica matemática es una parte de la lógica y las matemáticas que consiste en el estudio matemático de la lógica y en la aplicación de este estudio a otras áreas de las matemáticas. La lógica matemática tiene estrechas conexiones con las ciencias de la computación y la lógica filosófica.
La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones y algoritmos, utilizando un lenguaje formal.
La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de los fundamentos de las matemáticas. Actualmente se usan indiferentemente como sinónimos las expresiones: lógica simbólica (o logística), lógica matemática, lógica teorética y lógica formal.
La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente.
Historia
Siglo XIX
Previamente ya se hicieron algunos intentos de tratar las operaciones lógicas formales de una manera simbólica por parte de algunos filósofos matemáticos como Leibniz y Lambert, pero su labor permaneció desconocida y aislada.A partir de la segunda mitad del siglo XIX, la lógica sería revolucionada profundamente. En 1847, George Boole publicó un breve tratado titulado El análisis matemático de la lógica, y en 1854 otro más importante titulado Las leyes del pensamiento. La idea de Boole fue construir a la lógica como un cálculo en el que los valores de verdad se representan mediante el 0 (falsedad) y el 1 (verdad), y a los que se les aplican operaciones matemáticas como la suma y la multiplicación.
Al mismo tiempo, Augustus De Morgan publica en 1847 su obra Lógica formal, donde introduce las leyes de De Morgan e intenta generalizar la noción de silogismo. Otro importante contribuyente inglés fue John Venn, quien en 1881 publicó su libro Lógica Simbólica, donde introdujo los famosos diagramas de Venn.
Charles Sanders Peirce y Ernst Schröder también hicieron importantes contribuciones.
Sin embargo, la verdadera revolución de la lógica vino de la mano de Gottlob Frege, quien frecuentemente es considerado como el lógico más importante de la historia, junto con Aristóteles. En su trabajo de 1879, la Conceptografía, Frege ofrece por primera vez un sistema completo de lógica de predicados y cálculo proposicional. También desarrolla la idea de un lenguaje formal y define la noción de prueba. Estas ideas constituyeron una base teórica fundamental para el desarrollo de las computadoras y las ciencias de la computación, entre otras cosas. Pese a esto, los contemporáneos de Frege pasaron por alto sus contribuciones, probablemente a causa de la complicada notación que desarrolló el autor. En 1893 y 1903, Frege publica en dos volúmenes Las leyes de la aritmética, donde intenta deducir toda la matemática a partir de la lógica, en lo que se conoce como el proyecto logicista. Su sistema y su aplicación a la teoría de conjuntos, sin embargo, contenía una contradicción (la paradoja de Russell).
Lógica matemática fue el nombre dado por Giuseppe Peano para esta disciplina. En esencia, es la lógica de Aristóteles, pero desde el punto de vista de una nueva notación, más abstracta, tomada del álgebra.
Siglo XX
El siglo XX sería uno de enormes desarrollos en lógica. A partir del siglo XX, la lógica pasó a estudiarse por su interés intrínseco, y no sólo por sus virtudes como propedéutica, por lo que estudió a niveles mucho más abstractos.En 1910, Bertrand Russell y Alfred North Whitehead publican Principia mathematica, un trabajo monumental en el que logran gran parte de la matemática a partir de la lógica, evitando caer en las paradojas en las que cayó Frege. Los autores reconocen el mérito de Frege en el prefacio. En contraste con el trabajo de Frege, Principia mathematica tuvo un éxito rotundo, y llegó a considerarse uno de los trabajos de no ficción más importantes e influyentes de todo el siglo XX. Principia mathematica utiliza una notación inspirada en la de Giuseppe Peano, parte de la cual todavía es muy utilizada hoy en día.
En 1912 C. I. Lewis publica Conditionals and the Algebra of Logic, justo después de los Principia Mathematica de Russell y Whitehead. En 1918 publica A Survey of Symbolic Logic en donde propone un nuevo condicional más adecuado para recoger el significado de la expresión "si... entonces" del lenguaje natural. Lewis lo llama implicación estricta. El nuevo condicional requiere, para ser verdadero, una relación más fuerte entre el antecedente y el consecuente que el condicional clásico.
En 1920 David Hilbert propuso de forma explícita un proyecto de investigación (en metamatemática, como se llamó entonces) que acabó siendo conocido como programa de Hilbert. Quería que la matemática fuese formulada sobre unas bases sólidas y completamente lógicas.
El origen de los modelos abstractos de computación se encuadra en los años '30 (antes de que existieran los ordenadores modernos), en el trabajo de los lógicos Alonzo Church, Kurt Gödel, Stephen Kleene, Emil Leon Post, Haskell Curry y Alan Turing. Estos trabajos iniciales han tenido una profunda influencia, tanto en el desarrollo teórico como en abundantes aspectos de la práctica de la computación; previendo incluso la existencia de ordenadores de propósito general, la posibilidad de interpretar programas, la dualidad entre software y hardware, y la representación de lenguajes por estructuras formales basados en reglas de producción.
La deducción natural fue introducida por Gerhard Gentzen en su trabajo Investigaciones sobre la inferencia lógica (Untersuchungen über das logische Schliessen), publicado en 1934-1935.
En los años 40 Alfred Tarski comenzó a desarrollar junto a sus discípulos el álgebra relacional, en la que pueden expresarse tanto la teoría axiomática de conjuntos como la aritmética de Peano. También desarrolló junto a sus discípulos las álgebras cilíndricas, que son a la lógica de primer orden lo que el álgebra booleana a la lógica proposicional. En 1941 publicó en inglés uno de los manuales de lógica más acreditados, Introduction to Logic and to the Methodology of Deductive Sciences.
Noam Chomsky en 1956 propone una clasificación jerárquica de distintos tipos de gramáticas formales que generan lenguajes formales llamada jerarquía de Chomsky.
Si bien a la luz de los sistemas contemporáneos la lógica aristotélica puede parecer equivocada e incompleta, Jan Łukasiewicz mostró que, a pesar de sus grandes dificultades, la lógica aristotélica era consistente, si bien había que interpretarse como lógica de clases, lo cual no es pequeña modificación. Por ello la silogística prácticamente no tiene uso actualmente.
Además de la lógica proposicional y la lógica de predicados, el siglo XX vio el desarrollo de muchos otros sistemas lógicos; entre los que destacan las muchas lógicas modales.
QUE PRETENDE LA LÓGICA MATEMÁTICA.
La lógica matemática es el intento de dar una “forma universal” al pensamiento, expresándolo por un sistema unívoco de signos (estos quiere decir, un sistema en el que cada signo tenga un solo significado en un mismo contexto), con un sistema de relaciones entre esos signos comparable al cálculo matemático, para alcanzar así todas las verdades.
La lógica matemática pretende hacer que todas las relaciones reales se vuelvan formales; pretende reducirlas a una “expresión matemática” que pueda ser calculada como en las matemáticas.
Por esa razón es que se le llama también “álgebra de la lógica”.
OBJETO DE LA LÓGICA MATEMÁTICA.
Al estudiar la lógica clásica, hemos constatado el hecho de que la relación fundamental que se estudia es la del verbo ser.
Eso es así porque la lógica clásica es una lógica que parte del “análisis de las proposiciones en sus términos” componentes: considerar sólo una relación o reducir las demás relaciones a una sola simplifica el asunto y posibilita la construcción formal de la lógica clásica.
La lógica matemática considera las proposiciones como formando una unidad de significado, como una proposición ya constituida, por eso es que la lógica matemática ha sido llamada también “lógica de proposiciones no analizadas”.
Esto significa que el interés de la lógica matemática recae en la proposición integralmente considerada, lo cual no es obstáculo para efectuar en algún nivel ciertos análisis de las proposiciones.
MÉTODO DE LA LÓGICA MATEMÁTICA.
Considera la lógica matemática como punto de partida las relaciones de “inclusión” (producto lógico) y de “exclusión” (suma lógica).
A partir de esas relaciones se puede establecer un sistema de simbolización como el del álgebra en el cual pueda expresarse toda proposición del lenguaje y de la ciencia.
Por ese medio pretenden analizar a un nivel metalógico (más que lógico) todo tipo de razonamiento desde la forma cuantitativa de ese mismo razonamiento.
PARTÍCULAS FÁCTICAS Y LÓGICAS DEL LENGUAJE.
Las partículas fácticas (del latín “factum” que quiere decir “hecho”) son aquellas partículas variables que pueden tener referencia a un objeto o acontecimiento.
Las partículas lógicas son aquellas partículas que determinan a las partículas fácticas ya sea limitándolas (cuantificadores) o bien relacionándolas (funciones).
PROPOSICIONES Y FUNCIONES.
En el caso de la lógica matemática de proposiciones no analizadas, los elementos del razonamiento lógico son de dos clases:
a) Variables de proposición, que representan el contenido fáctico del lenguaje.
b) Funciones de proposición, que representan las operaciones lógico-matemáticas que pueden realizarse entre las variables de proposición.
VALOR DE VERDAD.
Una proposición simple puede ser verdadera o falsa, pero no verdadera y falsa a la vez.
Las proposiciones complejas que están compuestas de dos o más proposiciones simples, pueden tener diversas posibilidades de verdad.
Si es “n” el número de proposiciones simples que integran la proposición compleja, el número de posibilidades de verdad de la proposición compleja vendrá indicado por 2n.
Cada una de las proposiciones simples puede simbolizarse por una letra minúscula de la “p” en adelante, así: p, q, r, s, ..., p’, q’, ..., p’’, q’’,
TABLA DE VERDAD.
Si ordenamos las posibilidades de verdad de una proposición, nos encontramos son su tabla de verdad.
La tabla de verdad nos refleja gráficamente las condiciones de verdad de una proposición. Veamos algunos ejemplos:
p
|
p
|
q
|
p
|
q
|
r
| ||
V
|
V
|
V
|
V
|
V
|
V
| ||
F
|
V
|
F
|
V
|
V
|
F
| ||
F
|
V
|
V
|
F
|
V
| |||
F
|
F
|
V
|
F
|
F
| |||
F
|
V
|
V
| |||||
F
|
V
|
F
| |||||
F
|
F
|
V
| |||||
F
|
F
|
F
|
Comentarios
Publicar un comentario